AWS Certified Machine Learning Engineer - Associate
Last Update 3 hours ago
Total Questions : 149
Dive into our fully updated and stable MLA-C01 practice test platform, featuring all the latest AWS Certified Associate exam questions added this week. Our preparation tool is more than just a Amazon Web Services study aid; it's a strategic advantage.
Our free AWS Certified Associate practice questions crafted to reflect the domains and difficulty of the actual exam. The detailed rationales explain the 'why' behind each answer, reinforcing key concepts about MLA-C01. Use this test to pinpoint which areas you need to focus your study on.
An ML engineer is tuning an image classification model that performs poorly on one of two classes. The poorly performing class represents an extremely small fraction of the training dataset.
Which solution will improve the model’s performance?
Case study
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
Before the ML engineer trains the model, the ML engineer must resolve the issue of the imbalanced data.
Which solution will meet this requirement with the LEAST operational effort?
An ML engineer is training a simple neural network model. The ML engineer tracks the performance of the model over time on a validation dataset. The model's performance improves substantially at first and then degrades after a specific number of epochs.
Which solutions will mitigate this problem? (Choose two.)
An ML engineer needs to implement a solution to host a trained ML model. The rate of requests to the model will be inconsistent throughout the day.
The ML engineer needs a scalable solution that minimizes costs when the model is not in use. The solution also must maintain the model's capacity to respond to requests during times of peak usage.
Which solution will meet these requirements?
A company has significantly increased the amount of data stored as .csv files in an Amazon S3 bucket. Data transformation scripts and queries are now taking much longer than before.
An ML engineer must implement a solution to optimize the data for query performance with the LEAST operational overhead.
Which solution will meet this requirement?
A company wants to predict the success of advertising campaigns by considering the color scheme of each advertisement. An ML engineer is preparing data for a neural network model. The dataset includes color information as categorical data.
Which technique for feature engineering should the ML engineer use for the model?
A company is using an AWS Lambda function to monitor the metrics from an ML model. An ML engineer needs to implement a solution to send an email message when the metrics breach a threshold.
Which solution will meet this requirement?
A travel company wants to create an ML model to recommend the next airport destination for its users. The company has collected millions of data records about user location, recent search history on the company's website, and 2,000 available airports. The data has several categorical features with a target column that is expected to have a high-dimensional sparse matrix.
The company needs to use Amazon SageMaker AI built-in algorithms for the model. An ML engineer converts the categorical features by using one-hot encoding.
Which algorithm should the ML engineer implement to meet these requirements?
A company needs to run a batch data-processing job on Amazon EC2 instances. The job will run during the weekend and will take 90 minutes to finish running. The processing can handle interruptions. The company will run the job every weekend for the next 6 months.
Which EC2 instance purchasing option will meet these requirements MOST cost-effectively?
A company regularly receives new training data from the vendor of an ML model. The vendor delivers cleaned and prepared data to the company's Amazon S3 bucket every 3-4 days.
The company has an Amazon SageMaker pipeline to retrain the model. An ML engineer needs to implement a solution to run the pipeline when new data is uploaded to the S3 bucket.
Which solution will meet these requirements with the LEAST operational effort?

TESTED 15 Feb 2026
Hi this is Romona Kearns from Holland and I would like to tell you that I passed my exam with the use of exams4sure dumps. I got same questions in my exam that I prepared from your test engine software. I will recommend your site to all my friends for sure.
Our all material is important and it will be handy for you. If you have short time for exam so, we are sure with the use of it you will pass it easily with good marks. If you will not pass so, you could feel free to claim your refund. We will give 100% money back guarantee if our customers will not satisfy with our products.